10 Jul 2024
import matplotlib.pyplot as plt # Data points for bullish N pattern (XAU/USD) x_bullish = [0, 1, 2, 3] y_bullish = [1800, 1850, 1825, 1900] # Data points for bearish N pattern (XAU/USD) x_bearish = [0, 1, 2, 3] y_bearish = [1900, 1825, 1850, 1750] # Creating subplots for bullish and bearish N patterns fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6)) # Plotting the bullish N pattern ax1.plot(x_bullish, y_bullish, marker='o', color='green') ax1.set_title('Pola N Bullish XAU/USD') ax1.set_xlabel('Waktu') ax1.set_ylabel('Harga ($)') ax1.annotate('A', xy=(0, 1800), xytext=(0, 1750), arrowprops=dict(facecolor='black', shrink=0.05)) ax1.annotate('B', xy=(1, 1850), xytext=(1, 1875), arrowprops=dict(facecolor='black', shrink=0.05)) ax1.annotate('C', xy=(2, 1825), xytext=(2, 1780), arrowprops=dict(facecolor='black', shrink=0.05)) ax1.annotate('D', xy=(3, 1900), xytext=(3, 1930), arrowprops=dict(facecolor='black', shrink=0.05)) ax1.grid(True) # Plotting the bearish N pattern ax2.plot(x_bearish, y_bearish, marker='o', color='red') ax2.set_title('Pola N Bearish XAU/USD') ax2.set_xlabel('Waktu') ax2.set_ylabel('Harga ($)') ax2.annotate('A', xy=(0, 1900), xytext=(0, 1930), arrowprops=dict(facecolor='black', shrink=0.05)) ax2.annotate('B', xy=(1, 1825), xytext=(1, 1800), arrowprops=dict(facecolor='black', shrink=0.05)) ax2.annotate('C', xy=(2, 1850), xytext=(2, 1880), arrowprops=dict(facecolor='black', shrink=0.05)) ax2.annotate('D', xy=(3, 1750), xytext=(3, 1720), arrowprops=dict(facecolor='black', shrink=0.05)) ax2.grid(True) plt.show()