PINE LIBRARY
Diupdate

machine_learning

77
Library "machine_learning"

euclidean(a, b)
  Parameters:
    a (array<float>)
    b (array<float>)

manhattan(a, b)
  Parameters:
    a (array<float>)
    b (array<float>)

cosine_similarity(a, b)
  Parameters:
    a (array<float>)
    b (array<float>)

cosine_distance(a, b)
  Parameters:
    a (array<float>)
    b (array<float>)

chebyshev(a, b)
  Parameters:
    a (array<float>)
    b (array<float>)

minkowski(a, b, p)
  Parameters:
    a (array<float>)
    b (array<float>)
    p (float)

dot_product(a, b)
  Parameters:
    a (array<float>)
    b (array<float>)

vector_norm(arr, p)
  Parameters:
    arr (array<float>)
    p (float)

sigmoid(x)
  Parameters:
    x (float)

sigmoid_derivative(x)
  Parameters:
    x (float)

tanh_derivative(x)
  Parameters:
    x (float)

relu(x)
  Parameters:
    x (float)

relu_derivative(x)
  Parameters:
    x (float)

leaky_relu(x, alpha)
  Parameters:
    x (float)
    alpha (float)

leaky_relu_derivative(x, alpha)
  Parameters:
    x (float)
    alpha (float)

elu(x, alpha)
  Parameters:
    x (float)
    alpha (float)

gelu(x)
  Parameters:
    x (float)

swish(x, beta)
  Parameters:
    x (float)
    beta (float)

softmax(arr)
  Parameters:
    arr (array<float>)

apply_activation(arr, activation_type, alpha)
  Parameters:
    arr (array<float>)
    activation_type (string)
    alpha (float)

normalize_minmax(arr, min_val, max_val)
  Parameters:
    arr (array<float>)
    min_val (float)
    max_val (float)

normalize_zscore(arr, mean_val, std_val)
  Parameters:
    arr (array<float>)
    mean_val (float)
    std_val (float)

normalize_matrix_cols(m)
  Parameters:
    m (matrix<float>)

scaler_fit(arr, method)
  Parameters:
    arr (array<float>)
    method (string)

scaler_fit_matrix(m, method)
  Parameters:
    m (matrix<float>)
    method (string)

scaler_transform(scaler, arr)
  Parameters:
    scaler (ml_scaler)
    arr (array<float>)

scaler_transform_matrix(scaler, m)
  Parameters:
    scaler (ml_scaler)
    m (matrix<float>)

clip(x, lo, hi)
  Parameters:
    x (float)
    lo (float)
    hi (float)

clip_array(arr, lo, hi)
  Parameters:
    arr (array<float>)
    lo (float)
    hi (float)

loss_mse(predicted, actual)
  Parameters:
    predicted (array<float>)
    actual (array<float>)

loss_rmse(predicted, actual)
  Parameters:
    predicted (array<float>)
    actual (array<float>)

loss_mae(predicted, actual)
  Parameters:
    predicted (array<float>)
    actual (array<float>)

loss_binary_crossentropy(predicted, actual)
  Parameters:
    predicted (array<float>)
    actual (array<float>)

loss_huber(predicted, actual, delta)
  Parameters:
    predicted (array<float>)
    actual (array<float>)
    delta (float)

gradient_step(weights, gradients, lr)
  Parameters:
    weights (array<float>)
    gradients (array<float>)
    lr (float)

adam_step(weights, gradients, m, v, lr, beta1, beta2, t, epsilon)
  Parameters:
    weights (array<float>)
    gradients (array<float>)
    m (array<float>)
    v (array<float>)
    lr (float)
    beta1 (float)
    beta2 (float)
    t (int)
    epsilon (float)

clip_gradients(gradients, max_norm)
  Parameters:
    gradients (array<float>)
    max_norm (float)

lr_decay(initial_lr, decay_rate, step)
  Parameters:
    initial_lr (float)
    decay_rate (float)
    step (int)

lr_cosine_annealing(initial_lr, min_lr, step, total_steps)
  Parameters:
    initial_lr (float)
    min_lr (float)
    step (int)
    total_steps (int)

knn_create(k, distance_type)
  Parameters:
    k (int)
    distance_type (string)

knn_fit(model, X, y)
  Parameters:
    model (ml_knn)
    X (matrix<float>)
    y (array<int>)

knn_predict(model, x)
  Parameters:
    model (ml_knn)
    x (array<float>)

knn_predict_proba(model, x)
  Parameters:
    model (ml_knn)
    x (array<float>)

knn_batch_predict(model, X)
  Parameters:
    model (ml_knn)
    X (matrix<float>)

linreg_fit(X, y)
  Parameters:
    X (matrix<float>)
    y (array<float>)

ridge_fit(X, y, lambda)
  Parameters:
    X (matrix<float>)
    y (array<float>)
    lambda (float)

linreg_predict(model, x)
  Parameters:
    model (ml_linreg)
    x (array<float>)

linreg_predict_batch(model, X)
  Parameters:
    model (ml_linreg)
    X (matrix<float>)

linreg_score(model, X, y)
  Parameters:
    model (ml_linreg)
    X (matrix<float>)
    y (array<float>)

logreg_create(n_features, learning_rate, iterations)
  Parameters:
    n_features (int)
    learning_rate (float)
    iterations (int)

logreg_fit(model, X, y)
  Parameters:
    model (ml_logreg)
    X (matrix<float>)
    y (array<int>)

logreg_predict_proba(model, x)
  Parameters:
    model (ml_logreg)
    x (array<float>)

logreg_predict(model, x, threshold)
  Parameters:
    model (ml_logreg)
    x (array<float>)
    threshold (float)

logreg_batch_predict(model, X, threshold)
  Parameters:
    model (ml_logreg)
    X (matrix<float>)
    threshold (float)

nb_create(n_classes)
  Parameters:
    n_classes (int)

nb_fit(model, X, y)
  Parameters:
    model (ml_nb)
    X (matrix<float>)
    y (array<int>)

nb_predict_proba(model, x)
  Parameters:
    model (ml_nb)
    x (array<float>)

nb_predict(model, x)
  Parameters:
    model (ml_nb)
    x (array<float>)

nn_create(layers, activation)
  Parameters:
    layers (array<int>)
    activation (string)

nn_forward(model, x)
  Parameters:
    model (ml_nn)
    x (array<float>)

nn_predict_class(model, x)
  Parameters:
    model (ml_nn)
    x (array<float>)

accuracy(y_true, y_pred)
  Parameters:
    y_true (array<int>)
    y_pred (array<int>)

precision(y_true, y_pred, positive_class)
  Parameters:
    y_true (array<int>)
    y_pred (array<int>)
    positive_class (int)

recall(y_true, y_pred, positive_class)
  Parameters:
    y_true (array<int>)
    y_pred (array<int>)
    positive_class (int)

f1_score(y_true, y_pred, positive_class)
  Parameters:
    y_true (array<int>)
    y_pred (array<int>)
    positive_class (int)

r_squared(y_true, y_pred)
  Parameters:
    y_true (array<float>)
    y_pred (array<float>)

mse(y_true, y_pred)
  Parameters:
    y_true (array<float>)
    y_pred (array<float>)

rmse(y_true, y_pred)
  Parameters:
    y_true (array<float>)
    y_pred (array<float>)

mae(y_true, y_pred)
  Parameters:
    y_true (array<float>)
    y_pred (array<float>)

confusion_matrix(y_true, y_pred, n_classes)
  Parameters:
    y_true (array<int>)
    y_pred (array<int>)
    n_classes (int)

sliding_window(data, window_size)
  Parameters:
    data (array<float>)
    window_size (int)

train_test_split(X, y, test_ratio)
  Parameters:
    X (matrix<float>)
    y (array<int>)
    test_ratio (float)

create_binary_labels(data, threshold)
  Parameters:
    data (array<float>)
    threshold (float)

lag_matrix(data, n_lags)
  Parameters:
    data (array<float>)
    n_lags (int)

signal_to_position(prediction, threshold_long, threshold_short)
  Parameters:
    prediction (float)
    threshold_long (float)
    threshold_short (float)

confidence_sizing(probability, max_size, min_confidence)
  Parameters:
    probability (float)
    max_size (float)
    min_confidence (float)

kelly_sizing(win_rate, avg_win, avg_loss, max_fraction)
  Parameters:
    win_rate (float)
    avg_win (float)
    avg_loss (float)
    max_fraction (float)

sharpe_ratio(returns, risk_free_rate)
  Parameters:
    returns (array<float>)
    risk_free_rate (float)

sortino_ratio(returns, risk_free_rate)
  Parameters:
    returns (array<float>)
    risk_free_rate (float)

max_drawdown(equity)
  Parameters:
    equity (array<float>)

atr_stop_loss(entry_price, atr, multiplier, is_long)
  Parameters:
    entry_price (float)
    atr (float)
    multiplier (float)
    is_long (bool)

risk_reward_take_profit(entry_price, stop_loss, ratio)
  Parameters:
    entry_price (float)
    stop_loss (float)
    ratio (float)

ensemble_vote(predictions)
  Parameters:
    predictions (array<int>)

ensemble_weighted_average(predictions, weights)
  Parameters:
    predictions (array<float>)
    weights (array<float>)

smooth_prediction(current, previous, alpha)
  Parameters:
    current (float)
    previous (float)
    alpha (float)

regime_classifier(volatility, trend_strength, vol_threshold, trend_threshold)
  Parameters:
    volatility (float)
    trend_strength (float)
    vol_threshold (float)
    trend_threshold (float)

ml_knn
  Fields:
    k (series int)
    distance_type (series string)
    X_train (matrix<float>)
    y_train (array<int>)

ml_linreg
  Fields:
    coefficients (array<float>)
    intercept (series float)
    lambda (series float)

ml_logreg
  Fields:
    weights (array<float>)
    bias (series float)
    learning_rate (series float)
    iterations (series int)

ml_nn
  Fields:
    layers (array<int>)
    weights (matrix<float>)
    biases (array<float>)
    weight_offsets (array<int>)
    bias_offsets (array<int>)
    activation (series string)

ml_nb
  Fields:
    class_priors (array<float>)
    means (matrix<float>)
    variances (matrix<float>)
    n_classes (series int)

ml_scaler
  Fields:
    min_vals (array<float>)
    max_vals (array<float>)
    means (array<float>)
    stds (array<float>)
    method (series string)

ml_train_result
  Fields:
    loss_history (array<float>)
    final_loss (series float)
    converged (series bool)
    iterations_run (series int)

ml_prediction
  Fields:
    class_label (series int)
    probability (series float)
    probabilities (array<float>)
    value (series float)
Catatan Rilis
Machine Learning Library for PineScript v6

A comprehensive machine learning library providing classification, regression, neural networks, and trading utilities for TradingView's PineScript.

---
Constants

| Constant | Description |
|---------------------|--------------------------------------------------|
| EPSILON_TINY | Smallest epsilon (1e-15) for numerical stability |
| EPSILON_SMALL | Small epsilon (1e-10) for numerical stability |
| EPSILON_MEDIUM | Medium epsilon (1e-8) for numerical stability |
| LOG_2PI | Precomputed log(2*PI) for Gaussian calculations |
| MAX_ITERATIONS | Default max iterations for algorithms (100) |
| MAX_MATRIX_ELEMENTS | PineScript matrix element limit (100,000) |

---
User-Defined Types

| Type | Description |
|-----------------|---------------------------------------|
| ml_knn | K-Nearest Neighbors model |
| ml_linreg | Linear/Ridge regression model |
| ml_logreg | Logistic regression model |
| ml_nn | Multi-layer perceptron neural network |
| ml_nb | Gaussian Naive Bayes classifier |
| ml_scaler | Data scaler for normalization |
| ml_train_result | Training result with loss history |
| ml_prediction | Prediction result with probabilities |

---
Functions

Distance Functions

- euclidean(a, b) - Euclidean (L2) distance
- manhattan(a, b) - Manhattan (L1) distance
- cosine_similarity(a, b) - Cosine similarity (-1 to 1)
- cosine_distance(a, b) - Cosine distance (0 to 2)
- chebyshev(a, b) - Chebyshev (L-infinity) distance
- minkowski(a, b, p) - Minkowski distance of order p
- dot_product(a, b) - Dot product of two vectors
- vector_norm(arr, p) - P-norm of a vector

Activation Functions

- sigmoid(x) - Sigmoid activation (0 to 1)
- sigmoid_derivative(x) - Derivative of sigmoid
- tanh_derivative(x) - Derivative of tanh
- relu(x) - ReLU activation
- relu_derivative(x) - Derivative of ReLU
- leaky_relu(x, alpha) - Leaky ReLU activation
- leaky_relu_derivative(x, alpha) - Derivative of Leaky ReLU
- elu(x, alpha) - ELU activation
- gelu(x) - GELU activation
- swish(x, beta) - Swish activation
- softmax(arr) - Softmax for probability distribution
- apply_activation(arr, type, alpha) - Apply activation to array

Preprocessing / Scaling

- normalize_minmax(arr, min, max) - Min-max normalization [0,1]
- normalize_zscore(arr, mean, std) - Z-score standardization
- normalize_matrix_cols(m) - Standardize matrix columns
- scaler_fit(arr, method) - Fit scaler to array
- scaler_fit_matrix(m, method) - Fit scaler to matrix
- scaler_transform(scaler, arr) - Transform array with scaler
- scaler_transform_matrix(scaler, m) - Transform matrix with scaler
- clip(x, lo, hi) - Clip value to range
- clip_array(arr, lo, hi) - Clip array values

Loss Functions

- loss_mse(predicted, actual) - Mean Squared Error
- loss_rmse(predicted, actual) - Root Mean Squared Error
- loss_mae(predicted, actual) - Mean Absolute Error
- loss_binary_crossentropy(predicted, actual) - Binary Cross-Entropy
- loss_huber(predicted, actual, delta) - Huber loss

Optimization

- gradient_step(weights, gradients, lr) - SGD step
- adam_step(weights, gradients, m, v, lr, ...) - Adam optimizer step
- clip_gradients(gradients, max_norm) - Gradient clipping
- lr_decay(initial_lr, decay_rate, step) - Learning rate decay
- lr_cosine_annealing(initial_lr, min_lr, step, total) - Cosine annealing

K-Nearest Neighbors

- knn_create(k, distance_type) - Create KNN model
- knn_fit(model, X, y) - Fit KNN with training data
- knn_predict(model, x) - Predict single sample
- knn_predict_proba(model, x) - Predict class probabilities
- knn_batch_predict(model, X) - Predict multiple samples

Linear Regression

- linreg_fit(X, y) - Fit OLS linear regression
- ridge_fit(X, y, lambda) - Fit Ridge regression
- linreg_predict(model, x) - Predict single value
- linreg_predict_batch(model, X) - Predict multiple values
- linreg_score(model, X, y) - Calculate R-squared

Logistic Regression

- logreg_create(n_features, lr, iterations) - Create model
- logreg_fit(model, X, y) - Fit with gradient descent
- logreg_predict_proba(model, x) - Predict probability
- logreg_predict(model, x, threshold) - Predict class
- logreg_batch_predict(model, X, threshold) - Batch prediction

Naive Bayes

- nb_create(n_classes) - Create Gaussian Naive Bayes
- nb_fit(model, X, y) - Fit model
- nb_predict_proba(model, x) - Predict class probabilities
- nb_predict(model, x) - Predict class label

Neural Network

- nn_create(layers, activation) - Create MLP network
- nn_forward(model, x) - Forward propagation
- nn_predict_class(model, x) - Predict class label

Metrics

- accuracy(y_true, y_pred) - Classification accuracy
- precision(y_true, y_pred, positive_class) - Precision score
- recall(y_true, y_pred, positive_class) - Recall score
- f1_score(y_true, y_pred, positive_class) - F1 score
- r_squared(y_true, y_pred) - R-squared for regression
- mse(y_true, y_pred) - Mean Squared Error
- rmse(y_true, y_pred) - Root Mean Squared Error
- mae(y_true, y_pred) - Mean Absolute Error
- confusion_matrix(y_true, y_pred, n_classes) - Confusion matrix

Data Utilities

- sliding_window(data, window_size) - Create sliding window matrix
- train_test_split(X, y, test_ratio) - Split into train/test sets
- create_binary_labels(data, threshold) - Create binary labels
- lag_matrix(data, n_lags) - Create lag features

Trading Utilities

- signal_to_position(prediction, long_thresh, short_thresh) - Convert to position signal
- confidence_sizing(probability, max_size, min_confidence) - Size by confidence
- kelly_sizing(win_rate, avg_win, avg_loss, max_fraction) - Kelly Criterion sizing
- sharpe_ratio(returns, risk_free_rate) - Annualized Sharpe ratio
- sortino_ratio(returns, risk_free_rate) - Annualized Sortino ratio
- max_drawdown(equity) - Maximum drawdown
- atr_stop_loss(entry, atr, multiplier, is_long) - ATR-based stop loss
- risk_reward_take_profit(entry, stop_loss, ratio) - R:R take profit
- ensemble_vote(predictions) - Majority voting
- ensemble_weighted_average(predictions, weights) - Weighted average
- smooth_prediction(current, previous, alpha) - EMA smoothing
- regime_classifier(volatility, trend_strength, ...) - Market regime classification

Pernyataan Penyangkalan

Informasi dan publikasi ini tidak dimaksudkan, dan bukan merupakan, saran atau rekomendasi keuangan, investasi, trading, atau jenis lainnya yang diberikan atau didukung oleh TradingView. Baca selengkapnya di Ketentuan Penggunaan.