This is a tool / library for developers, that contains several common and adapted kernel functions as well as a kernel regression function and enum to easily select and embed a list into the settings dialog.
How to Choose and Modify Kernels in Practice
Compact Support Kernels (e.g., Epanechnikov, Triangular): Use for localized smoothing and emphasizing nearby data.
Oscillatory Kernels (e.g., Wave, Cosine): Ideal for detecting periodic patterns or mean-reverting behavior.
Smooth Tapering Kernels (e.g., Gaussian, Logistic): Use for smoothing long-term trends or identifying global price behavior.
kernel_Epanechnikov(u) Parameters: u (float)
kernel_Epanechnikov_alt(u, sensitivity) Parameters: u (float) sensitivity (float)
kernel_Triangular(u) Parameters: u (float)
kernel_Triangular_alt(u, sensitivity) Parameters: u (float) sensitivity (float)
kernel_Rectangular(u) Parameters: u (float)
kernel_Uniform(u) Parameters: u (float)
kernel_Uniform_alt(u, sensitivity) Parameters: u (float) sensitivity (float)
kernel_Logistic(u) Parameters: u (float)
kernel_Logistic_alt(u) Parameters: u (float)
kernel_Logistic_alt2(u, sigmoid_steepness) Parameters: u (float) sigmoid_steepness (float)
kernel_Gaussian(u) Parameters: u (float)
kernel_Gaussian_alt(u, sensitivity) Parameters: u (float) sensitivity (float)
kernel_Silverman(u) Parameters: u (float)
kernel_Quartic(u) Parameters: u (float)
kernel_Quartic_alt(u, sensitivity) Parameters: u (float) sensitivity (float)
kernel_Biweight(u) Parameters: u (float)
kernel_Triweight(u) Parameters: u (float)
kernel_Sinc(u) Parameters: u (float)
kernel_Wave(u) Parameters: u (float)
kernel_Wave_alt(u) Parameters: u (float)
kernel_Cosine(u) Parameters: u (float)
kernel_Cosine_alt(u, sensitivity) Parameters: u (float) sensitivity (float)
kernel(u, select, alt_modificator) wrapper for all standard kernel functions, see enum Kernel comments and function descriptions for usage szenarios and parameters Parameters: u (float) select (series Kernel) alt_modificator (float)
kernel_regression(src, bandwidth, kernel, exponential_distance, alt_modificator) wrapper for kernel regression with all standard kernel functions, see enum Kernel comments for usage szenarios. performance optimized version using fixed bandwidth and target Parameters: src (float): input data series bandwidth (simple int): sample window of nearest neighbours for the kernel to process kernel (simple Kernel): type of Kernel to use for processing, see Kernel enum or respective functions for more details exponential_distance (simple bool): if true this puts more emphasis on local / more recent values alt_modificator (float): see kernel functions for parameter descriptions. Mostly used to pronounce emphasis on local values or introduce a decay/dampening to the kernel output
Dengan semangat TradingView yang sesungguhnya, penulis telah menerbitkan Kode Pine ini sebagai pustaka sumber terbuka sehingga programmer Pine lain dari komunitas kami dapat menggunakannya kembali. Hormat untuk penulis! Anda dapat menggunakan pustaka ini secara pribadi atau dalam publikasi sumber terbuka lainnya, namun penggunaan kembali kode ini dalam publikasi diatur oleh Tata Tertib.
Informasi dan publikasi tidak dimaksudkan untuk menjadi, dan bukan merupakan saran keuangan, investasi, perdagangan, atau rekomendasi lainnya yang diberikan atau didukung oleh TradingView. Baca selengkapnya di Persyaratan Penggunaan.