PINE LIBRARY

MLExtensions

Diupdate
Library "MLExtensions"

normalizeDeriv(src, quadraticMeanLength)
  Returns the smoothed hyperbolic tangent of the input series.
  Parameters:
    src: <series float> The input series (i.e., the first-order derivative for price).
    quadraticMeanLength: <int> The length of the quadratic mean (RMS).
  Returns: nDeriv <series float> The normalized derivative of the input series.

normalize(src, min, max)
  Rescales a source value with an unbounded range to a target range.
  Parameters:
    src: <series float> The input series
    min: <float> The minimum value of the unbounded range
    max: <float> The maximum value of the unbounded range
  Returns: <series float> The normalized series

rescale(src, oldMin, oldMax, newMin, newMax)
  Rescales a source value with a bounded range to anther bounded range
  Parameters:
    src: <series float> The input series
    oldMin: <float> The minimum value of the range to rescale from
    oldMax: <float> The maximum value of the range to rescale from
    newMin: <float> The minimum value of the range to rescale to
    newMax: <float> The maximum value of the range to rescale to
  Returns: <series float> The rescaled series

color_green(prediction)
  Assigns varying shades of the color green based on the KNN classification
  Parameters:
    prediction: Value (int|float) of the prediction
  Returns: color <color>

color_red(prediction)
  Assigns varying shades of the color red based on the KNN classification
  Parameters:
    prediction: Value of the prediction
  Returns: color

tanh(src)
  Returns the the hyperbolic tangent of the input series. The sigmoid-like hyperbolic tangent function is used to compress the input to a value between -1 and 1.
  Parameters:
    src: <series float> The input series (i.e., the normalized derivative).
  Returns: tanh <series float> The hyperbolic tangent of the input series.

dualPoleFilter(src, lookback)
  Returns the smoothed hyperbolic tangent of the input series.
  Parameters:
    src: <series float> The input series (i.e., the hyperbolic tangent).
    lookback: <int> The lookback window for the smoothing.
  Returns: filter <series float> The smoothed hyperbolic tangent of the input series.

tanhTransform(src, smoothingFrequency, quadraticMeanLength)
  Returns the tanh transform of the input series.
  Parameters:
    src: <series float> The input series (i.e., the result of the tanh calculation).
    smoothingFrequency
    quadraticMeanLength
  Returns: signal <series float> The smoothed hyperbolic tangent transform of the input series.

n_rsi(src, n1, n2)
  Returns the normalized RSI ideal for use in ML algorithms.
  Parameters:
    src: <series float> The input series (i.e., the result of the RSI calculation).
    n1: <int> The length of the RSI.
    n2: <int> The smoothing length of the RSI.
  Returns: signal <series float> The normalized RSI.

n_cci(src, n1, n2)
  Returns the normalized CCI ideal for use in ML algorithms.
  Parameters:
    src: <series float> The input series (i.e., the result of the CCI calculation).
    n1: <int> The length of the CCI.
    n2: <int> The smoothing length of the CCI.
  Returns: signal <series float> The normalized CCI.

n_wt(src, n1, n2)
  Returns the normalized WaveTrend Classic series ideal for use in ML algorithms.
  Parameters:
    src: <series float> The input series (i.e., the result of the WaveTrend Classic calculation).
    n1
    n2
  Returns: signal <series float> The normalized WaveTrend Classic series.

n_adx(highSrc, lowSrc, closeSrc, n1)
  Returns the normalized ADX ideal for use in ML algorithms.
  Parameters:
    highSrc: <series float> The input series for the high price.
    lowSrc: <series float> The input series for the low price.
    closeSrc: <series float> The input series for the close price.
    n1: <int> The length of the ADX.

regime_filter(src, threshold, useRegimeFilter)
  Parameters:
    src
    threshold
    useRegimeFilter

filter_adx(src, length, adxThreshold, useAdxFilter)
  filter_adx
  Parameters:
    src: <series float> The source series.
    length: <int> The length of the ADX.
    adxThreshold: <int> The ADX threshold.
    useAdxFilter: <bool> Whether to use the ADX filter.
  Returns: <series float> The ADX.

filter_volatility(minLength, maxLength, useVolatilityFilter)
  filter_volatility
  Parameters:
    minLength: <int> The minimum length of the ATR.
    maxLength: <int> The maximum length of the ATR.
    useVolatilityFilter: <bool> Whether to use the volatility filter.
  Returns: <bool> Boolean indicating whether or not to let the signal pass through the filter.

backtest(high, low, open, startLongTrade, endLongTrade, startShortTrade, endShortTrade, isStopLossHit, maxBarsBackIndex, thisBarIndex)
  Performs a basic backtest using the specified parameters and conditions.
  Parameters:
    high: <series float> The input series for the high price.
    low: <series float> The input series for the low price.
    open: <series float> The input series for the open price.
    startLongTrade: <series bool> The series of conditions that indicate the start of a long trade.`
    endLongTrade: <series bool> The series of conditions that indicate the end of a long trade.
    startShortTrade: <series bool> The series of conditions that indicate the start of a short trade.
    endShortTrade: <series bool> The series of conditions that indicate the end of a short trade.
    isStopLossHit: <bool> The stop loss hit indicator.
    maxBarsBackIndex: <int> The maximum number of bars to go back in the backtest.
    thisBarIndex: <int> The current bar index.
  Returns: <tuple strings> A tuple containing backtest values

init_table()
  init_table()
  Returns: tbl <series table> The backtest results.

update_table(tbl, tradeStatsHeader, totalTrades, totalWins, totalLosses, winLossRatio, winrate, stopLosses)
  update_table(tbl, tradeStats)
  Parameters:
    tbl: <series table> The backtest results table.
    tradeStatsHeader: <string> The trade stats header.
    totalTrades: <float> The total number of trades.
    totalWins: <float> The total number of wins.
    totalLosses: <float> The total number of losses.
    winLossRatio: <float> The win loss ratio.
    winrate: <float> The winrate.
    stopLosses: <float> The total number of stop losses.
  Returns: <void> Updated backtest results table.
Catatan Rilis
v2

Updated:
backtest(high, low, open, startLongTrade, endLongTrade, startShortTrade, endShortTrade, isEarlySignalFlip, maxBarsBackIndex, thisBarIndex, src, useWorstCase)
  Performs a basic backtest using the specified parameters and conditions.
  Parameters:
    high: <series float> The input series for the high price.
    low: <series float> The input series for the low price.
    open: <series float> The input series for the open price.
    startLongTrade: <series bool> The series of conditions that indicate the start of a long trade.
    endLongTrade: <series bool> The series of conditions that indicate the end of a long trade.
    startShortTrade: <series bool> The series of conditions that indicate the start of a short trade.
    endShortTrade: <series bool> The series of conditions that indicate the end of a short trade.
    isEarlySignalFlip: <bool> Whether or not the signal flip is early.
    maxBarsBackIndex: <int> The maximum number of bars to go back in the backtest.
    thisBarIndex: <int> The current bar index.
    src: <series float> The source series.
    useWorstCase: <bool> Whether to use the worst case scenario for the backtest.
  Returns: <tuple strings> A tuple containing backtest values

update_table(tbl, tradeStatsHeader, totalTrades, totalWins, totalLosses, winLossRatio, winrate, earlySignalFlips)
  update_table(tbl, tradeStats)
  Parameters:
    tbl: <series table> The backtest results table.
    tradeStatsHeader: <string> The trade stats header.
    totalTrades: <float> The total number of trades.
    totalWins: <float> The total number of wins.
    totalLosses: <float> The total number of losses.
    winLossRatio: <float> The win loss ratio.
    winrate: <float> The winrate.
    earlySignalFlips: <float> The total number of early signal flips.
  Returns: <void> Updated backtest results table.
Catatan Rilis
v3

Added:
getColorShades(color)
  Creates an array of colors with varying shades of the input color
  Parameters:
    color (color): <color> The color to create shades of
  Returns: <array color> An array of colors with varying shades of the input color

getPredictionColor(prediction, neighborsCount, shadesArr)
  Determines the color shade based on prediction percentile
  Parameters:
    prediction (float): <float> Value of the prediction
    neighborsCount (int): <int> The number of neighbors used in a nearest neighbors classification
    shadesArr (color[]): <array color> An array of colors with varying shades of the input color
  Returns: shade <color> Color shade based on prediction percentile
digitalsignalfiltermachine-learningmachinelearningMATHstatisticstechindicator

Perpustakaan pine

Dengan semangat TradingView yang sesungguhnya, penulis telah menerbitkan Kode Pine ini sebagai pustaka sumber terbuka sehingga programmer Pine lain dari komunitas kami dapat menggunakannya kembali. Hormat untuk penulis! Anda dapat menggunakan pustaka ini secara pribadi atau dalam publikasi sumber terbuka lainnya, namun penggunaan kembali kode ini dalam publikasi diatur oleh Tata Tertib.


❤️ Patreon w/ Lorentzian 2.0: patreon.com/jdehorty

🎥 Lorentzian Classification Tutorial: youtu.be/AdINVvnJfX4

🤖 Discord: discord.com/invite/djXT5sAPfQ

⏩ LinkedIn: linkedin.com/in/justin-dehorty
Juga di:

Pernyataan Penyangkalan