OPEN-SOURCE SCRIPT
Adaptive Machine Learning Trading System [PhenLabs]

๐Adaptive ML Trading System [PhenLabs]
Version: PineScriptโขv6
๐Description
The Adaptive ML Trading System is a sophisticated machine learning indicator that combines ensemble modeling with advanced technical analysis. This system uses XGBoost, Random Forest, and Neural Network algorithms to generate high-confidence trading signals while incorporating robust risk management features. Traders benefit from objective, data-driven decision-making that adapts to changing market conditions.
๐Points of Innovation
โข Machine Learning Ensemble - Three integrated models (XGBoost, Random Forest, Neural Network)
โข Confidence-Based Trading - Only executes trades when ML confidence exceeds threshold
โข Dynamic Risk Management - ATR-based stop loss and max drawdown protection
โข Adaptive Position Sizing - Volatility-adjusted position sizing with confidence weighting
โข Real-Time Performance Metrics - Live tracking of win rate, Sharpe ratio, and performance
โข Multi-Timeframe Feature Analysis - Adaptive lookback periods for different market regimes
๐งCore Components
โข ML Ensemble Engine - Weighted combination of XGBoost, Random Forest, and Neural Network outputs
โข Feature Normalization System - Advanced preprocessing with custom tanh/sigmoid activation
โข Risk Management Module - Dynamic position sizing and drawdown protection
โข Performance Dashboard - Real-time metrics and risk status monitoring
โข Alert System - Comprehensive alert conditions for entries, exits, and risk events
๐ฅKey Features
โข High-confidence ML signals with customizable confidence thresholds
โข Multiple trading modes (Conservative, Balanced, Aggressive) for different risk profiles
โข Integrated stop loss and risk management with ATR-based calculations
โข Real-time performance metrics including win rate and Sharpe ratio
โข Comprehensive alert system with entry, exit, and risk management notifications
โข Visual confidence bands and threshold indicators for easy signal interpretation
๐จVisualization
โข ML Signal Line - Primary signal output ranging from -1 to +1
โข Confidence Bands - Visual representation of model confidence levels
โข Threshold Lines - Customizable buy/sell threshold levels
โข Position Histogram - Current market position visualization
โข Performance Tables - Real-time metrics display in customizable positions

๐Usage Guidelines
Model Configuration
โข Confidence Threshold: Default 0.55, Range 0.5-0.95 - Minimum confidence for signals
โข Model Sensitivity: Default 0.9, Range 0.1-2.0 - Adjusts signal sensitivity
โข Ensemble Mode: Conservative/Balanced/Aggressive - Trading style preference
โข Signal Threshold: Default 0.55, Range 0.3-0.9 - ML signal threshold for entries
Risk Management
โข Position Size %: Default 10%, Range 1-50% - Portfolio percentage per trade
โข Max Drawdown %: Default 15%, Range 5-30% - Maximum allowed drawdown
โข Stop Loss ATR: Default 2.0, Range 0.5-5.0 - Stop loss in ATR multiples
โข Dynamic Sizing: Default true - Volatility-based position adjustment
Display Settings
โข Show Signals: Default true - Display entry/exit signals
โข Show Threshold Signals: Default true - Display ยฑ0.6 threshold crosses
โข Show Confidence Bands: Default true - Display ML confidence levels
โข Performance Dashboard: Default true - Show metrics table
โ Best Use Cases
โข Swing trading with 1-5 day holding periods
โข Trend-following strategies in established trends
โข Volatility breakout trading during high-confidence periods
โข Risk-adjusted position sizing for portfolio management
โข Multi-timeframe confirmation for existing strategies
โ ๏ธLimitations
โข Requires sufficient historical data for accurate ML predictions
โข May experience low confidence periods in choppy markets
โข Performance varies across different asset classes and timeframes
โข Not suitable for very short-term scalping strategies
โข Requires understanding of basic risk management principles
๐กWhat Makes This Unique
โข True machine learning ensemble with multiple model types
โข Confidence-based trading rather than simple signal generation
โข Integrated risk management with dynamic position sizing
โข Real-time performance tracking and metrics
โข Adaptive parameters that adjust to market conditions
๐ฌHow It Works
Feature Calculation: Computes 20+ technical features from price/volume data
Feature Normalization: Applies custom normalization for ML compatibility
Ensemble Prediction: Combines XGBoost, Random Forest, and Neural Network outputs
Signal Generation: Produces confidence-weighted trading signals
Risk Management: Applies position sizing and stop loss rules
Execution: Generates alerts and visual signals based on thresholds
Version: PineScriptโขv6
๐Description
The Adaptive ML Trading System is a sophisticated machine learning indicator that combines ensemble modeling with advanced technical analysis. This system uses XGBoost, Random Forest, and Neural Network algorithms to generate high-confidence trading signals while incorporating robust risk management features. Traders benefit from objective, data-driven decision-making that adapts to changing market conditions.
๐Points of Innovation
โข Machine Learning Ensemble - Three integrated models (XGBoost, Random Forest, Neural Network)
โข Confidence-Based Trading - Only executes trades when ML confidence exceeds threshold
โข Dynamic Risk Management - ATR-based stop loss and max drawdown protection
โข Adaptive Position Sizing - Volatility-adjusted position sizing with confidence weighting
โข Real-Time Performance Metrics - Live tracking of win rate, Sharpe ratio, and performance
โข Multi-Timeframe Feature Analysis - Adaptive lookback periods for different market regimes
๐งCore Components
โข ML Ensemble Engine - Weighted combination of XGBoost, Random Forest, and Neural Network outputs
โข Feature Normalization System - Advanced preprocessing with custom tanh/sigmoid activation
โข Risk Management Module - Dynamic position sizing and drawdown protection
โข Performance Dashboard - Real-time metrics and risk status monitoring
โข Alert System - Comprehensive alert conditions for entries, exits, and risk events
๐ฅKey Features
โข High-confidence ML signals with customizable confidence thresholds
โข Multiple trading modes (Conservative, Balanced, Aggressive) for different risk profiles
โข Integrated stop loss and risk management with ATR-based calculations
โข Real-time performance metrics including win rate and Sharpe ratio
โข Comprehensive alert system with entry, exit, and risk management notifications
โข Visual confidence bands and threshold indicators for easy signal interpretation
๐จVisualization
โข ML Signal Line - Primary signal output ranging from -1 to +1
โข Confidence Bands - Visual representation of model confidence levels
โข Threshold Lines - Customizable buy/sell threshold levels
โข Position Histogram - Current market position visualization
โข Performance Tables - Real-time metrics display in customizable positions
๐Usage Guidelines
Model Configuration
โข Confidence Threshold: Default 0.55, Range 0.5-0.95 - Minimum confidence for signals
โข Model Sensitivity: Default 0.9, Range 0.1-2.0 - Adjusts signal sensitivity
โข Ensemble Mode: Conservative/Balanced/Aggressive - Trading style preference
โข Signal Threshold: Default 0.55, Range 0.3-0.9 - ML signal threshold for entries
Risk Management
โข Position Size %: Default 10%, Range 1-50% - Portfolio percentage per trade
โข Max Drawdown %: Default 15%, Range 5-30% - Maximum allowed drawdown
โข Stop Loss ATR: Default 2.0, Range 0.5-5.0 - Stop loss in ATR multiples
โข Dynamic Sizing: Default true - Volatility-based position adjustment
Display Settings
โข Show Signals: Default true - Display entry/exit signals
โข Show Threshold Signals: Default true - Display ยฑ0.6 threshold crosses
โข Show Confidence Bands: Default true - Display ML confidence levels
โข Performance Dashboard: Default true - Show metrics table
โ Best Use Cases
โข Swing trading with 1-5 day holding periods
โข Trend-following strategies in established trends
โข Volatility breakout trading during high-confidence periods
โข Risk-adjusted position sizing for portfolio management
โข Multi-timeframe confirmation for existing strategies
โ ๏ธLimitations
โข Requires sufficient historical data for accurate ML predictions
โข May experience low confidence periods in choppy markets
โข Performance varies across different asset classes and timeframes
โข Not suitable for very short-term scalping strategies
โข Requires understanding of basic risk management principles
๐กWhat Makes This Unique
โข True machine learning ensemble with multiple model types
โข Confidence-based trading rather than simple signal generation
โข Integrated risk management with dynamic position sizing
โข Real-time performance tracking and metrics
โข Adaptive parameters that adjust to market conditions
๐ฌHow It Works
Feature Calculation: Computes 20+ technical features from price/volume data
Feature Normalization: Applies custom normalization for ML compatibility
Ensemble Prediction: Combines XGBoost, Random Forest, and Neural Network outputs
Signal Generation: Produces confidence-weighted trading signals
Risk Management: Applies position sizing and stop loss rules
Execution: Generates alerts and visual signals based on thresholds
๐กNote:
This indicator works best on daily and 4-hour timeframes for most assets. Ensure you understand the risk management settings before live trading. The system includes automatic risk-off modes that halt trading during excessive drawdown periods.
Skrip open-source
Dengan semangat TradingView yang sesungguhnya, pembuat skrip ini telah menjadikannya sebagai sumber terbuka, sehingga para trader dapat meninjau dan memverifikasi fungsinya. Salut untuk penulisnya! Meskipun Anda dapat menggunakannya secara gratis, perlu diingat bahwa penerbitan ulang kode ini tunduk pada Tata Tertib kami.
TradingView Charting w/ Crypto Systems: phenlabs.com
Join our growing community: discord.gg/phen
All content provided by PhenLabs is for informational & educational purposes only. Past performance does not guarantee future results.
Join our growing community: discord.gg/phen
All content provided by PhenLabs is for informational & educational purposes only. Past performance does not guarantee future results.
Pernyataan Penyangkalan
Informasi dan publikasi ini tidak dimaksudkan, dan bukan merupakan, saran atau rekomendasi keuangan, investasi, trading, atau jenis lainnya yang diberikan atau didukung oleh TradingView. Baca selengkapnya di Ketentuan Penggunaan.
Skrip open-source
Dengan semangat TradingView yang sesungguhnya, pembuat skrip ini telah menjadikannya sebagai sumber terbuka, sehingga para trader dapat meninjau dan memverifikasi fungsinya. Salut untuk penulisnya! Meskipun Anda dapat menggunakannya secara gratis, perlu diingat bahwa penerbitan ulang kode ini tunduk pada Tata Tertib kami.
TradingView Charting w/ Crypto Systems: phenlabs.com
Join our growing community: discord.gg/phen
All content provided by PhenLabs is for informational & educational purposes only. Past performance does not guarantee future results.
Join our growing community: discord.gg/phen
All content provided by PhenLabs is for informational & educational purposes only. Past performance does not guarantee future results.
Pernyataan Penyangkalan
Informasi dan publikasi ini tidak dimaksudkan, dan bukan merupakan, saran atau rekomendasi keuangan, investasi, trading, atau jenis lainnya yang diberikan atau didukung oleh TradingView. Baca selengkapnya di Ketentuan Penggunaan.