OPEN-SOURCE SCRIPT

Adaptive Machine Learning Trading System [PhenLabs]

1โ€ฏ927
๐Ÿ“ŠAdaptive ML Trading System [PhenLabs]
Version: PineScriptโ„ขv6

๐Ÿ“ŒDescription
The Adaptive ML Trading System is a sophisticated machine learning indicator that combines ensemble modeling with advanced technical analysis. This system uses XGBoost, Random Forest, and Neural Network algorithms to generate high-confidence trading signals while incorporating robust risk management features. Traders benefit from objective, data-driven decision-making that adapts to changing market conditions.

๐Ÿš€Points of Innovation
โ€ข Machine Learning Ensemble - Three integrated models (XGBoost, Random Forest, Neural Network)
โ€ข Confidence-Based Trading - Only executes trades when ML confidence exceeds threshold
โ€ข Dynamic Risk Management - ATR-based stop loss and max drawdown protection
โ€ข Adaptive Position Sizing - Volatility-adjusted position sizing with confidence weighting
โ€ข Real-Time Performance Metrics - Live tracking of win rate, Sharpe ratio, and performance
โ€ข Multi-Timeframe Feature Analysis - Adaptive lookback periods for different market regimes

๐Ÿ”งCore Components
โ€ข ML Ensemble Engine - Weighted combination of XGBoost, Random Forest, and Neural Network outputs
โ€ข Feature Normalization System - Advanced preprocessing with custom tanh/sigmoid activation
โ€ข Risk Management Module - Dynamic position sizing and drawdown protection
โ€ข Performance Dashboard - Real-time metrics and risk status monitoring
โ€ข Alert System - Comprehensive alert conditions for entries, exits, and risk events

๐Ÿ”ฅKey Features
โ€ข High-confidence ML signals with customizable confidence thresholds
โ€ข Multiple trading modes (Conservative, Balanced, Aggressive) for different risk profiles
โ€ข Integrated stop loss and risk management with ATR-based calculations
โ€ข Real-time performance metrics including win rate and Sharpe ratio
โ€ข Comprehensive alert system with entry, exit, and risk management notifications
โ€ข Visual confidence bands and threshold indicators for easy signal interpretation

๐ŸŽจVisualization
โ€ข ML Signal Line - Primary signal output ranging from -1 to +1
โ€ข Confidence Bands - Visual representation of model confidence levels
โ€ข Threshold Lines - Customizable buy/sell threshold levels
โ€ข Position Histogram - Current market position visualization
โ€ข Performance Tables - Real-time metrics display in customizable positions

cuplikan

๐Ÿ“–Usage Guidelines
Model Configuration
โ€ข Confidence Threshold: Default 0.55, Range 0.5-0.95 - Minimum confidence for signals
โ€ข Model Sensitivity: Default 0.9, Range 0.1-2.0 - Adjusts signal sensitivity
โ€ข Ensemble Mode: Conservative/Balanced/Aggressive - Trading style preference
โ€ข Signal Threshold: Default 0.55, Range 0.3-0.9 - ML signal threshold for entries

Risk Management
โ€ข Position Size %: Default 10%, Range 1-50% - Portfolio percentage per trade
โ€ข Max Drawdown %: Default 15%, Range 5-30% - Maximum allowed drawdown
โ€ข Stop Loss ATR: Default 2.0, Range 0.5-5.0 - Stop loss in ATR multiples
โ€ข Dynamic Sizing: Default true - Volatility-based position adjustment

Display Settings
โ€ข Show Signals: Default true - Display entry/exit signals
โ€ข Show Threshold Signals: Default true - Display ยฑ0.6 threshold crosses
โ€ข Show Confidence Bands: Default true - Display ML confidence levels
โ€ข Performance Dashboard: Default true - Show metrics table

โœ…Best Use Cases
โ€ข Swing trading with 1-5 day holding periods
โ€ข Trend-following strategies in established trends
โ€ข Volatility breakout trading during high-confidence periods
โ€ข Risk-adjusted position sizing for portfolio management
โ€ข Multi-timeframe confirmation for existing strategies

โš ๏ธLimitations
โ€ข Requires sufficient historical data for accurate ML predictions
โ€ข May experience low confidence periods in choppy markets
โ€ข Performance varies across different asset classes and timeframes
โ€ข Not suitable for very short-term scalping strategies
โ€ข Requires understanding of basic risk management principles

๐Ÿ’กWhat Makes This Unique
โ€ข True machine learning ensemble with multiple model types
โ€ข Confidence-based trading rather than simple signal generation
โ€ข Integrated risk management with dynamic position sizing
โ€ข Real-time performance tracking and metrics
โ€ข Adaptive parameters that adjust to market conditions

๐Ÿ”ฌHow It Works
Feature Calculation: Computes 20+ technical features from price/volume data
Feature Normalization: Applies custom normalization for ML compatibility
Ensemble Prediction: Combines XGBoost, Random Forest, and Neural Network outputs
Signal Generation: Produces confidence-weighted trading signals
Risk Management: Applies position sizing and stop loss rules
Execution: Generates alerts and visual signals based on thresholds

๐Ÿ’กNote:
This indicator works best on daily and 4-hour timeframes for most assets. Ensure you understand the risk management settings before live trading. The system includes automatic risk-off modes that halt trading during excessive drawdown periods.

Pernyataan Penyangkalan

Informasi dan publikasi ini tidak dimaksudkan, dan bukan merupakan, saran atau rekomendasi keuangan, investasi, trading, atau jenis lainnya yang diberikan atau didukung oleh TradingView. Baca selengkapnya di Ketentuan Penggunaan.