inequality_chebyshev_sample(data_sample) Calculates Chebyshev Inequality for a array of values. Parameters:
data_sample: float[], array of numbers.
Returns: float
intersection_of_independent_events(events) Probability that all arguments will happen when neither outcome is affected by the other (accepts 1 or more arguments) Parameters:
events: float[], 0 >= _p >= 1, list of event probabilities.
Returns: float
union_of_independent_events(events) Probability that either one of the arguments will happen when neither outcome is affected by the other (accepts 1 or more arguments) Parameters:
events: float[], 0 >= _p >= 1, list of event probabilities.
Returns: float
mass_function(sample, n_bins) Probabilities for each bin in the range of sample. Parameters:
sample: float[], samples to pool probabilities.
n_bins: int, number of bins to split the range return float[]
cumulative_distribution_function(mean, stdev, value) Use the CDF to determine the probability that a random observation that is taken from the population will be less than or equal to a certain value. Or returns the area of probability for a known value in a normal distribution. Parameters:
mean: float, samples to pool probabilities.
stdev: float, number of bins to split the range
value: float, limit at which to stop.
Returns: float
transition_matrix(distribution) Transition matrix for the suplied distribution. Parameters:
distribution: float[], array with probability distribution. ex:. [0.25, 0.50, 0.25]
Returns: float[]
diffusion_matrix(transition_matrix, dimension, target_step) Probability of reaching target_state at target_step after starting from start_state Parameters:
transition_matrix: float[], "pseudo2d" probability transition matrix.
dimension: int, size of the matrix dimension.
target_step: number of steps to find probability.
Returns: float[]
state_at_time(transition_matrix, dimension, start_state, target_state, target_step) Probability of reaching target_state at target_step after starting from start_state Parameters:
transition_matrix: float[], "pseudo2d" probability transition matrix.
dimension: int, size of the matrix dimension.
start_state: state at which to start.
target_state: state to find probability.
target_step: number of steps to find probability.
Catatan Rilis
v2 - general update on descriptions. - update to support builtin matrices. - fixed a mistake on the label/test code.
Dengan semangat TradingView yang sesungguhnya, penulis telah menerbitkan Kode Pine ini sebagai pustaka sumber terbuka sehingga programmer Pine lain dari komunitas kami dapat menggunakannya kembali. Hormat untuk penulis! Anda dapat menggunakan pustaka ini secara pribadi atau dalam publikasi sumber terbuka lainnya, namun penggunaan kembali kode ini dalam publikasi diatur oleh Tata Tertib.
Informasi dan publikasi tidak dimaksudkan untuk menjadi, dan bukan merupakan saran keuangan, investasi, perdagangan, atau rekomendasi lainnya yang diberikan atau didukung oleh TradingView. Baca selengkapnya di Persyaratan Penggunaan.