Ethereum

import pandas as pd import numpy as np import matplotlib.pyplot

71
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import yfinance as yf

# Stock data download (for example, Apple stock)
stock_symbol = 'AAPL'
data = yf.download(stock_symbol, start='2020-01-01', end='2025-01-01')

# Calculate Short and Long Moving Averages
short_window = 40
long_window = 100

data['Short_MA'] = data['Close'].rolling(window=short_window, min_periods=1).mean()
data['Long_MA'] = data['Close'].rolling(window=long_window, min_periods=1).mean()

# Generate signals
data['Signal'] = 0
data['Signal'][short_window:] = np.where(data['Short_MA'][short_window:] > data['Long_MA'][short_window:], 1, 0)
data['Position'] = data['Signal'].diff()

# Plotting the data
plt.figure(figsize=(12,6))
plt.plot(data['Close'], label='Close Price')
plt.plot(data['Short_MA'], label=f'{short_window} Days Moving Average')
plt.plot(data['Long_MA'], label=f'{long_window} Days Moving Average')

plt.scatter(data.index[data['Position'] == 1], data['Short_MA'][data['Position'] == 1], marker='^', color='g', label='Buy Signal', alpha=1)
plt.scatter(data.index[data['Position'] == -1], data['Short_MA'][data['Position'] == -1], marker='v', color='r', label='Sell Signal', alpha=1)

plt.title(f'{stock_symbol} Moving Average Crossover Strategy')
plt.legend(loc='best')
plt.show()

Pernyataan Penyangkalan

Informasi dan publikasi ini tidak dimaksudkan, dan bukan merupakan, saran atau rekomendasi keuangan, investasi, trading, atau jenis lainnya yang diberikan atau didukung oleh TradingView. Baca selengkapnya di Ketentuan Penggunaan.